ChroMoS Guide (version 1.2)

Background

Genome-wide association studies (GWAS) reveal increasing number of disease-associated SNPs. Since majority of these SNPs are located in intergenic and intronic regions the assessment of their functionality was hindered by the lack of information about regulatory regions. It requires SNP prioritization for initial analysis to be followed by more focused functional analysis.

ChroMoS (Chromatin Modified SNPs) combines genetic and epigenetic data with the goal to facilitate SNP classification and prioritization. To this end the user can provide SNP data in VCF format, dbSNPs or select GWAS SNPs from the local database. The user provides annotations for chromatin state regions obtained from pre-calculated segmentation of epigenomic data for ENCODE 9 cell types. The genome segmentation based on chromatin marks allows predictions of functional elements, such as enhancers and promoters. In fact, six major categories of chromatin states were distinguished: enhancer, insulator, transcribed, repressed and inactive states. Promoter category was further partitioned into 3 states: active, weak and poised based on the expression level of adjacent genes; enhancer class was segregated into strong and weak states. Transcribed regions were separated into strongly and weakly transcribed regions. Also, heterochromatic and repetitive states were isolated based on their H3K9me3 enrichment. Polycomb-repressed regions were defined as well. In total, 15 states were distinguished and this data has been used in ChroMoS. It was shown that disease-associated SNPs were more likely to be situated within strong enhancer regions than neutral dbSNPs. Particularly, it was evident for cell types related to a disease, e.g. lymphoblastoid cell (GM12878) enhancers contained SNPs associated with systemic lupus erythematosus [Ernst et al. (2011), Nature].

Based on this data ChroMoS suggests the functional impact of a SNP. In the process, SNPs are assigned to the various chromatin states. The chromatin states were computed applying multivariate hidden Markov model [Ernst et al. (2011), *Nature*]. It uses patterns of chromatin marks to reduce large combinatorial space to an interpretable set of chromatin states. SNPs positioned in enhancer or transcription states can be subjected to differential analysis of transcription factor binding with sTRAP, and SNPs with potential impact on post-transcriptional

mechanisms are evaluated by MicroSNiPer for a differential binding capacity of annotated miRNA.

sTRAP, analyzes variations in the DNA sequence and predicts quantitative changes to the binding strength of any transcription factor for which there is a binding model. It suggests possible consequences of sequence variations on regulatory networks. The method was tested against a set of known associations between SNPs and their regulatory effects. Its predictions are robust with respect to different parameters and model assumptions. This tool can serve as important point for routine analysis of disease-associated sequence regions [Manke et al. (2010) Hum Mutat].

MicroSNiPer predicts the impact of a SNP on putative microRNA targets. This application interrogates the 3'-untranslated region and predicts if a SNP within the target site will disrupt/eliminate or enhance/create a microRNA binding site. MicroSNiPer computes these sites and examines the effects of SNPs in real time. It has straightforward graphical representation of the results [Barenboim et al. (2010) Hum Mutat].

ChroMoS Manual

Warning: Firefox web-browser might not display properly a color map of more than 1000 SNPs. Download the map through the web-link.

ChroMoS ×
← → C [] epicenter.ie-freiburg.mpg.de/services/chromos/index.php
ChroMoS (Chromatin Modified SNPs) combines genetic and epigenetic data
to facilitate SNP classification, prioritization and prediction of their functional effect. SNP Input Methods
ChroMoS Manual
Press corresponding radio button to enable preferable input method.
Manual entry of SNPs or file upload in VCF format. Press NEXT button.
Enter validated dbSNP [build 137] rs# one per line. Press NEXT button.
SNP catalog of published genome-wide association studies (March 2013)
Enter Disease trait (e.g. Crohn's disease) or Pubmed id (e.g. 21102463):
Enter GWAS SNP id (e.g. rs3091315):
Search
Choose one PUBMED id. Press NEXT button.
Reset Next->

The first page of Chromos allows **four** input methods. To be able to activate each method a user has to press corresponding **radio button** first. Manual entry is default.

(1) Manual entry of SNPs on the following page. A user simply presses Next button on the bottom of the page.

A user is simply directed to the following page where she can upload SNP file in VCF or paste data in VCF into the text field.

Enter validated dbSNP rs# (one per line). Press NEXT button.
•
rs11134178 A rs2157697 rs6501530 rs12301774 V rs2594278 //
Enter Disease trait (e.g. Crohn's disease) or Pubmed id (e.g. 21102463):
•
Search
Choose one PUBMED id. Press NEXT button.
Enter GWAS SNP id (e.g. rs3091315):
•
Search
Choose one PUBMED id. Press NEXT button.
Reset Next->

(2) Entry of validated dbSNP rs# (~45 mln dbSNPs). One rs# per line. It can be any dbSNP not necessarily from GWAS catalog.After pressing Next button these SNPs appear in the second page SNP area in VCF.

(3) Entry by disease trait (e.g. Crohn's disease) or Pubmed id (e.g. 21102463).
Click second from the top radio button.
Enter Crohn's disease. Click Search button. It retrieves a list of all currently published Crohn's disease GWAS studies including unique Pubmed IDs.

Choose a certain Pubmed id e.g. 21102463. Press Next button. ChroMoS retrieves all 71 SNPs belonging to GWA study with PMID 21102463 and displays them on the next page.

Enter Disease trait (e.g. Crohn's disease) or Pubmed id (e.g. 21102463):
•
Search
Choose one PUBMED id. Press NEXT button.
Enter GWAS SNP id (e.g. rs3091315):
•
rs3091315 Search
Choose one PUBMED id. Press NEXT button.
21102463 Crohn's disease -
Reset Next->

pinformatics and Next Generation Sequencing Group; Max Planck Institute of Immunobiology and Epigeneti

(4) A user can also retrieve PMID by
entering SNP id (e.g. rs3091315) and
after pressing Search button choose
proper PMID. Press Next button.
Chromos retrieves all 71 SNPs
belonging to GWA study with PMID:
21102463 and displays them on the
next page.

ChroMoS		×						
← ⇒ C	🗋 epicente	r.ie-freiburg.mpg.de/sei	rvices/ch	romos/getS	npsByPm	id.php		
	Í	ChroM	103	5				
Warning: Fin	efox web-brov Ps in VCF	vser might not display p	roperly a	color map	of more th	an 1000 SI	NPs. Down	load the
• VCF		(,						
<pre># PubmedI chr1 7 chr1 6 chr1 1 chr1 1 chr1 1 chr1 1 chr1 1 chr1 2 chr1 2</pre>	D=21102463 879063 rs27 7705958 14377568 55230131 60830268 72853460 97727642 00877562 06939904	Crohn's disease 9768 C rs11209026 rs2476601 rs1142287 rs4650940 rs7517810 rs198598 rs7554511 rs3024505	T G A C A C G	G T G A A			•	
Upload fil Choose File	l e with SNI No file chose	Ps in VCF (file lim	nit 100	0 Kb):				
Choose c Gm12878HM Hepg2HMM HmecHMM HmecHMM HuvecHMM K562HMM NhekHMM NhekHMM	ell types wi	th pre-computed	chrom	atin state	s [Erns	t et al. (2	011) Nat	ture]:
Run ChroM	s and Next Ger	eration Sequencing Gro	up; Max I	Planck Institu	te of Immun	nobiology an	d Epigenetic	:5

On the second page 71 SNPs from GWA study with PMID 21102463 are displayed in VCF. On this stage user can add her own data by entering her data in the same format. If a user wants to upload only her own SNP file in VCF she can use **Choose File button**. In this case all data in VCF text area are erased. Pressing **Reset button** will recover original data. We provide a test file of 1,000 SNPs in VCF. It can be pasted to VCF area or uploaded as a VCF file directly from the local computer. *Important:* one SNP record has to be in one

continuous line. If this is not a case, text field should be stretched by grabbing lower right corner of the VCF text area.

A user can select one or more available cell types with pre-computed chromatin states

in bed-format [Ernst et al. (2011), *Nature*] by Ctrl-Click and press **Run Chromos button**. This invokes Perl CGI script which utilizes bedtools [Quinlan and Hall (2010), *Bioinformatics*] intersecting SNP coordinates with coordinates of chromatin states and, subsequently, matrix2png [Pavlidis and Noble (2003), *Bioinformatics*], which provides color map of 15 states for each cell type.

On *ChroMoS* result page a user can also download digital matrix based on which color map is created and use in other tools. Table includes color map with SNP id aligned to color code of chromatin states. Column names display a number of SNPs and chosen cell types. Warning: Firefox web-browser has some limitation on displaying large PNG files (above ~ 1,000 SNPs) and alignment for large files is not exact, too. Opera web-browser has also graphical limitations.

Next, a user should decide which way she prefers to filter results. One option is to use radio buttons in order to create certain pattern of states, e.g. "active promoter" in all 9 cell types. It is helpful for large SNP sets with only several cell types, or else, this type of selection likely produces empty set. Currently, the limitation for upload is 10,000 SNPs. If the SNP set consists of only several hundred SNPs, we suggest visually examining color map and manually checking out SNPs of interests (e.g. SNPs in the enhancer state in all 9 cell types).

If user starts manually checking out SNPs, pattern filtering is disabled. In order to return to pattern filtering and clear checkboxes user has to press **Reset button**. In this example 11 SNPs were checked out, and then **Filter button** was pressed.

On the next page filtered SNPs with color code are displayed. Then, in order to test if SNPs affect transcription factor binding a user can send SNPs to sTRAP [Manke et al., (2010) Hum Mutat.] selecting SNPs and pressing **Submit button**. Since sTRAP is computationally intensive, there is a limit of 60 SNPs to submit to sTRAP. Initial threshold is equal to one which displays

only significant candidate SNPs for impact on transcription factor binding sites. However, if there is an empty result table a user can decrease threshold (e.g. 0.6) and re-run sTRAP.

← → C 🗋 epi	center.ie-freib	urg.mpg.de/cg	ji-bin/chromos/sTra	ip.cgi			
	sT	RA	^{>} Out	put			
sTRAP is proce	ssing requ	est pleas	e wait				
* * * *							
Execution of sTRAI	took 8 seco	nds					
Re-run sTRAP v	with differ	ent thresho	ld (default = 1))			
1 submit							
- Jubinit							
		.	wo allolos:				
sTRAP affinity of	lifferences	between t	wo ancies.				
sTRAP affinity (lifferences	between t	wo ancies.				
STRAP affinity (lifferences	between t	wo ancies.				
sTRAP affinity of Right click to downloa Matrix name	differences	between tr put tab-file Strand(+)	Reference allele	Alternative allele	Reference sequence p-value	Alternative sequence p-value	Difference log(p)
sTRAP affinity of Right click to downlow Matrix name V\$AP1_Q4_01	d sTRAP out SNP Id rs17293632	between tr put tab-file Strand(+)	Reference allele	Alternative allele	Reference sequence p-value 0.00110567501258418	Alternative sequence p-value 0.0119897596599551	Difference log(p)
sTRAP affinity of Right click to downlow Matrix name V\$AP1_Q4_01 V\$AP1_01	Ifferences ad sTRAP out SNP Id rs17293632 rs17293632	between tr put tab-file Strand(+)	Reference allele C	Alternative allele T	Reference sequence p-value 0.00110567501258418 0.00390969760425464	Alternative sequence p-value 0.0119897596599551 0.0482327650556793	Difference log(p) -1.03518298258287 -1.09119899141132
TRAP affinity of Right click to downlow Matrix name VSAP1_Q4_01 VSAP1_01 VSBACH1_01	lifferences ad sTRAP out SNP Id rs17293632 rs17293632 rs17293632	between tr put tab-file Strand(+)	Reference allele C C C	Alternative allele T T T	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914
TRAP affinity of Right click to downlow WSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSBACH1_01 VSAP1_C	lifferences ad sTRAP out \$NP Id rs17293632 rs17293632 rs17293632	between tr put tab-file Strand(+)	Reference allele C C C C C	Alternative allele T T T T T	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084
TRAP affinity of Right click to downlow VSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSBACH1_01 VSAP1_C VSAP1_Q6_01	lifferences ad sTRAP out sNP Id rs17293632 rs17293632 rs17293632 rs17293632	between tr put tab-file Strand(+)	Reference allele C C C C C C C	Alternative allele T T T T T T	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765
TRAP affinity of Right click to downlow WAP1_Q4_01 V\$AP1_01 V\$AP1_01 V\$BACH1_01 V\$AP1_C V\$AP1_Q6_01 V\$BACH2_01	lifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632	between t put tab-file Strand(+) 	Reference allele C C C C C C C C C C	Alternative allele T T T T T T T	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214
STRAP affinity of Right click to downlow V\$AP1_Q4_01 V\$AP1_01 V\$BACH1_01 V\$AP1_C V\$AP1_Q6_01 V\$BACH2_01 V\$SZTA_Q2	lifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632	between t put tab-file Strand(+) 	Reference allele C C C C C C C C C C C C C	Alternative allele T T T T T T T T T	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399
STRAP affinity of Right click to downlow V\$AP1_Q4_01 V\$AP1_01 V\$AP1_01 V\$BACH1_01 V\$AP1_C V\$AP1_Q6_01 V\$BACH2_01 V\$ZTA_Q2 V\$HNF4_Q6_03	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632	between t put tab-file Strand(+) 	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T T T G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615
TRAP affinity of Right click to downlow VSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSAP1_C VSAP1_Q6_01 VSBACH2_01 VSBACH2_01 VSZTA_Q2 VSHNF4_Q6_03 VSER_Q6_02	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs713875	between t put tab-file Strand(+) 	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T T T T G G G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107 0.424264704849748	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057 0.0272834087538693	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615 1.19173827416224
STRAP affinity of Right click to downlow VSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSAP1_C VSAP1_Q6_01 VSBACH2_01 VSBACH2_01 VSZTA_Q2 VSHNF4_Q6_03 VSER_Q6_02 VSCOUP_DR1_Q6	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs173875 rs713875 rs713875	between t put tab-file Strand(+) 	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T T T G G G G G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107 0.424264704849748 0.164947589789596	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057 0.0272834087538693 0.0139621335720779	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615 1.19173827416224 1.07239418555481
STRAP affinity of Right click to downlow VSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSBACH1_01 VSAP1_C VSAP1_Q6_01 VSBACH2_01 VSZTA_Q2 VSHNF4_Q6_03 VSER_Q6_02 VSCOUP_DR1_Q6 VSVDR_Q6	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs173875 rs713875 rs713875 rs713875	between t put tab-file Strand(+) .	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T T T G G G G G G G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107 0.424264704849748 0.164947589789596 0.426165046249111	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057 0.0272834087538693 0.0139621335720779 0.0378340584225693	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615 1.19173827416224 1.07239418555481 1.05169489618021
STRAP affinity of Right click to downlow VSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSBACH1_01 VSAP1_C VSAP1_Q6_01 VSBACH2_01 VSEACH2_01 VSZTA_Q2 VSHNF4_Q6_03 VSER_Q6_02 VSCOUP_DR1_Q6 VSVDR_Q6 VSSF1_Q6	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs173875 rs713875 rs713875 rs713875 rs713875	between t put tab-file Strand(+) .	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T T G G G G G G G G G G G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107 0.424264704849748 0.164947589789596 0.426165046249111 0.382208535544993	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057 0.0272834087538693 0.0139621335720779 0.0378340584225693 0.0368058561884065	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615 1.19173827416224 1.07239418555481 1.05169489618021 1.01638345669612
STRAP affinity of Right click to downlow V\$AP1_Q4_01 V\$AP1_01 V\$AP1_01 V\$AP1_C V\$AP1_C V\$AP1_Q6_01 V\$BACH2_01 V\$EBACH2_01 V\$ZTA_Q2 V\$HNF4_Q6_03 V\$ER_Q6_02 V\$COUP_DR1_Q6 V\$VDR_Q6 V\$SF1_Q6 V\$CREB_Q2_01	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs173875 rs713875 rs713875 rs713875 rs713875	between t put tab-file Strand(+) .	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T G G G G G G G G G G G G G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107 0.424264704849748 0.164947589789596 0.426165046249111 0.382208535544993 0.052262341470492	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057 0.0272834087538693 0.0139621335720779 0.0378340584225693 0.0368058561884065 0.554928665715918	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615 1.19173827416224 1.07239418555481 1.05169489618021 1.01638345669612 -1.02604829636324
STRAP affinity of Right click to downlow VSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSBACH1_01 VSAP1_C VSAP1_Q6_01 VSBACH2_01 VSZTA_Q2 VSHNF4_Q6_03 VSER_Q6_02 VSCOUP_DR1_Q6 VSCREB_Q4 VSCREB_Q4	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs173875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875	between t put tab-file Strand(+) .	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T G G G G G G G G G G G G G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107 0.424264704849748 0.164947589789596 0.426165046249111 0.382208535544993 0.052262341470492 0.0234207955878721	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057 0.0272834087538693 0.0139621335720779 0.0378340584225693 0.0368058561884065 0.554928665715918 0.283156376141818	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615 1.19173827416224 1.07239418555481 1.05169489618021 1.01638345669612 -1.02604829636324 -1.082424701893
STRAP affinity of Right click to downlow VSAP1_Q4_01 VSAP1_Q4_01 VSAP1_01 VSBACH1_01 VSBACH2_01 VSAP1_Q6_01 VSDACH2_01 VSZTA_Q2 VSHNF4_Q6_03 VSER_Q6_02 VSCOUP_DR1_Q6 VSCREB_Q2_01 VSCREB_Q4 VSCREB_Q2	Ifferences ad sTRAP out rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs17293632 rs173875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875 rs713875	between t put tab-file Strand(+) .	Reference allele C C C C C C C C C C C C C C C C C	Alternative allele T T T T T T T G G G G G G G G G G G G	Reference sequence p-value 0.00110567501258418 0.00390969760425464 0.00273702774423668 0.00546569468256786 0.00043240517513643 0.0027246316295132 0.00451342868021076 0.203421526036107 0.424264704849748 0.164947589789596 0.426165046249111 0.382208535544993 0.052262341470492 0.0234207955878721 0.0215552919120643	Alternative sequence p-value 0.0119897596599551 0.0482327650556793 0.0369502323133488 0.0942122040997876 0.00894732906813756 0.0751947523791917 0.172522282096542 0.00899152026033057 0.0272834087538693 0.0139621335720779 0.0378340584225693 0.0368058561884065 0.554928665715918 0.283156376141818 0.306038535889868	Difference log(p) -1.03518298258287 -1.09119899141132 -1.13033797351914 -1.2364617962084 -1.31580252721765 -1.44087973959214 -1.58233861002399 1.35456378079615 1.19173827416224 1.07239418555481 1.05169489618021 1.01638345669612 -1.02604829636324 -1.082424701893 -1.15222220694803

R SCRIPT HAS FINISHED

The sTRAP result page will display transfac matrix names grouped by SNPs. The transcription factors with reduced affinity receive a negative ratio of p-values and those with increased binding get a positive ratio. On the sTRAP result page user can re-run sTRAP with a different threshold. On each step a user can download data in tab-format.

To demonstrate integration with MicroSNiPer [Barenboim *et al.* (2010) *Hum Mutat*], we download 1,000 SNPs sample file with Choose File button. We select two cell types GM12878 and H1hesc and press **Run ChroMoS button**.

ChroMos ×								
← → C 🗋 epicenter.ie-freiburg.mpg.de/services/	chromos/getSnpsByPmid.p	ohp						
ChroMos								
Warning: Firefox web-browser might not display properly	y a color map of more than	1000 SNPs. Download the map through th	e web-link.					
Enter SNPs in VCF (Variant Call Format)):							
• VCF	🕤 Open							×
	ChroMos_1	Fest			- 🔯	Search ChroMoS_Tes	st	
	Organize New folder							0
		Name ^	Date modified	Туре	Size			
	E Desktop	🔤 testik.vcf	5/24/2013 12:49 PM	VCF File	79 KB			
	Downloads	test2k.vcf	5/24/2013 12:52 PM	VCF File	164 KB			
		test3k.vcf	5/24/2013 12:52 PM 5/24/2013 12:53 PM	VCF File	244 KB 808 KB			
Upload file with SNPs in VCF (file limit 1)	Documents		5/2 (/2015 12:55114	VGT HC	00010			
Change File Ma file shapen Paget	Pictures							
Choose File No lie chosen Reset	Computer							
1000 SiVP VCP test file	Per computer							
Choose cell types with pre-computed chro	🙀 Network							
Gm12878HMM H1hescHMM Hepg2HIM HmecHMM								
HismithiM HuveHMM KS62HMM NhekHMM NhitHMM	File na	ime: testikvcf				All Files Open 👻	Cancel	
Run ChroMo5								
Bioinformatics and Next Generation Sequencing Group; Ma	x Planck Institute of Immunob	iology and Epigenetics						

On ChroMoS result page we choose out of 1,000 SNPs all SNPs which are in *transcriptional elongation* state by pressing **radio button pattern filtering**. Pressing **Filter button** will bring another page.

		-00-	ChroMosSNPsToMicroSNPer ×
			← → C
Find SNPs affecting Transco or predict SNP impact on mi MicroSNiPer Submit R Right click to download SNP 1	ription Factor binding with <u>sTRAP</u> (sel icroRNA target sites with <u>MicroSNiPe</u> eset	ect no more than 55 : r	ChroMoS to MicroSNiPer
Right click to download colors	<u>map</u>		
Right click to download annota	ation of chromatin states		Choose Set of SNPs (dbSNP build 137):
SNP FUNCTIONAL PREDICTION	NS SPECIFIC FOR THE LISTED CELL TYPES		validated dbSNPs 💌
Color cading Retive proofer Inactive/poised promoter Strong_enhancer Weak/poised enhancer Weak/poised enhancer Insulator Transcriptional transition Weak/poised enhancer Insulator Insulator Pranscriptional transition Mean Insulator Polyconb represed Heterochrom; Jow Signal Repetitive/ONV	Total 54 SNPs Gm12878 H1hesc ♥ rs1107910 rs1107910 ♥ rs11260570 rs11260570 ♥ rs112606710 rs11260570 ♥ rs1120321 rs1129332 ♥ rs11203131 rs1129333 ♥ rs112036570 rs1129333 ♥ rs112036571 rs12032637 ♥ rs120326571 rs12032637 ♥ rs121030 rs12203 ♥ rs12103090 rs12402622 ♥ rs12402622 rs124026222 ♥ rs12403237 rs12402622 ♥ rs12403237 rs12303287 ♥ rs13032877 rs1303287 ♥ rs13032877 rs1303287 ♥ rs1303287 rs1303287 ♥ rs12089314 rs1298931		Tab-delimited ChroMoS_SNPs: chr position SNP_id ref_allele alt_allele (e.g. chr1 9832359 rs7415181 G A) chr1 1692221 rs1107910 T C chr1 1201640 rs11260611 C T chr1 1203676 rs11260611 C T chr1 1203676 rs11200611 C T chr1 1203676 rs1120012 C T chr1 1203676 rs1120323 A G chr1 145382 rs112032637 A G chr1 127391 rs12062019 G A chr1 1249187 rs12142103 T A, G chr1 1249187 rs12142109 G A Find SNPs in 3'UTRs Reset SNPs in 3'UTRs (hg19 assembly) (Select only one SNP)
	vs:204119 rs:229418 vs:229418 rs:2296715 vs:2296715 rs:2296716 vs:2296716 rs:2296716 vs:2296718 rs:2340582 vs:2340582 rs:2340582 vs:2340582 rs:2340582 vs:2645081 rs:2645081 vs:2625175 rs:26862157 vs:3001336 rs:3001336 vs:3001344 rs:3001344 vs:3122920 rs:3122920		C rs1129333 chr1:2335676 A.G C rs3818448 chr1:1246972 CT C rs6659884 chr1:1717848 GT Choose one RefSeq id. Press NEXT button. RER1.NM_007033 •
			Brainformatics and Next Consention Sequencies Cours: Ver Planck Institute of Immunohis Ions and Existensities

On the filter result page there are 54 SNPs which are in *transcriptional elongation* state in both cell types. There is a possibility that some of them are in 3'UTR and can have an impact on microRNA target sites. In order to send these SNPs to integrated tool Microsniper a user has to choose MicroSNiPer from a menu on the top of the page. All SNPs will be automatically checked out. By pressing **Submit button** user send them to *ChroMoS to MicroSNiPer* page. On this stage a user can also add her SNPs in suggested format. Then, user tests if some of these SNPs are in 3'UTRs of RefSeq genes by pressing **Find SNPs in 3'UTRs button**.

Program filters SNPs for presenting in 3'UTRs and creates a table with radio buttons. User has to choose a single SNP from the table, and subsequently a transcript NM_id from the dropdown list. User also can choose validated dbSNPs (default) or a set of HapMap SNPs on the top of the page. Pressing **Next button** inputs this data to a routine MicroSNiPer workflow. A SNP selected with radio button is added to the list of validated dbSNPs (or HapMap SNPs) positioned within chosen 3'UTR. On MicroSNiPer page a user can also add her own SNPs. Then, user presses **Update SNP List button**, check out SNPs of interest (limit 6 SNPs) and presses **Run Microsniper button**. User can also go directly to MicroSNiPer main page on the http://epicenter.ie-freiburg.mpg.de/services/microsniper/.

REFERENCES

- Barenboim, M. et al. (2010) MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets, Hum Mutat, 31, 1223-1232.
- Ernst, J. et al. (2011) Mapping and analysis of chromatin state dynamics in nine human cell types, Nature, 473, 43-49.
- Franke, A. et al. (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci, Nat Genet, 42, 1118-1125.
- Manke, T. et al. (2010) Quantifying the effect of sequence variation on regulatory interactions, Hum Mutat, 31, 477-483.
- Pavlidis, P. and Noble, W.S. (2003) Matrix2png: a utility for visualizing matrix data, Bioinformatics, 19, 295-296.
- Pruitt, K.D. et al. (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins, Nucleic Acids Res, 35, D61-65.
- Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 26, 841-842.